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“Shear Dispersion’ in
Time-Varying Flows

W.C. Thacker

Abstract. Shear dispersion in time-varying flows is shown to be parameteriz-
able as effective diffusion with a time-varying diffusivity. This parameteriza-
tion is appropriate only for times long in comparison with the cross-shear
mixing time. High frequency variations of the flow do not contribute substan-
tially to the mixing. Low frequency variations of the flow can be accounted for
by simply allowing the parameters in the expression for the effective diffusivity
to take on a time dependence.

1. Introduction

Previous discussions (Bowden, 1965; Schonfeld, 1961; Okubo, 1967) of
harmonically varying shear have concluded that high frequency time variations
do not contribute substantially to the mixing. Here it is shown that, further-
more, a time-dependent diffusivity can be introduced to parameterize time-
dependent shear dispersion. A simple solvable model (Thacker, 1976) is used to
obtain closed form expressions for shear dispersion with arbitrary time depend-
ence.

2. Closed Form Expressions

Shear dispersion is mixing due to the combined effects of velocity shear and
cross-shear mixing. A simple model, which views the shear as a flow consisting
of two layers of fluid moving in opposite directions with velocities & zand with
mixing of contaminant between the layers at a rate «, can be expressed by the
equations
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where C; (x,#) and C; (x,#) are distributions of contaminant in the two layers, and
81 (x,#) and §; (x,2) are sources of contaminant. If # and a do not vary in time,
then C=V5 (C,+ Cy) is well approximated by the solution of a diffusion equation
with effective diffusivity given by K*=#2/2a (Thacker, 1976). It will be
shown that the same is true even if # and « depend upon time.

For the case of time-independent flow, where # and « are not functions of
time, closed form solutions for C =14(C;+C,) and AC=15(C;—Cs) can be
obtained in terms of a Green’'s function,
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The matrix notation,
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allows the solution to (1) for arbitrary initial conditions C(x,#=0) and sources of
contaminant S(x,#) to be expressed compactly as
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Equation (4) can be shown to be valid even when # and a are functions of
time. In this case, the matrix Green’s function is given by
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The matrices fgul,,a, are the matrix Green’s functions that govern the solution in
M time interval, from (:—1)¢t /Nto it/N in which the parameters have the
approximately constant values a; and #;. It is important that the matrix Green’s



functions (gui’o‘i are arranged for multiplication with the index 7 decreasing to
the right because they do not commurte. Thus, 9.« is the N-fold convolu-
tion of the Green’s function for each of N time intervals composing the total
interval from O to 7. In the limit, N goes to infinity, so that this is an infinite
convolution.,

This infinite convolution is difficult to evaluate. However, it is possible to
obtain closed form expressions for the moments (X") of the mean contaminant
distribution C(x,¢) for arbitrary functions a(#) and #(#). The Fourier transform of
C(x,1) is the generating function for these moments. Equation (4) expresses
C(x,) in terms of convolution of initial conditions and sources with Gy acr),
which in turn is an infinite convolution. Since the Fourier transform of a
convolution is a product, the problem is reduced to an easier one of evaluating an
infinite product.

The Fourier transform of 9, wn is given by
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where ;= («;%*— a;*)*. The moments of the distribution can be obtained by
multiplying moment matrices, which are generated according to
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with the Fourier transform of the initial distribution, if there are no sources.
The first few moment matrices are found to be
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Consider the case of initially localized distributions, Cl(x,t= 0) = 8(x) and
AC@x,t = 0) = Bd(x), \B | <1. If 8 = 0, the contaminant is initially distri-
buted equally between the two layers; if 3= % 1, it lies entirely within one of the
two layers. Also, suppose that there are no continuous sources of contaminant
S(x,t)=AS(x,t)=0. Then the first few moments of C(x,1),
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are given by
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These moments can be evaluated for arbitrary time dependence of the shear
and mixing. The zeroth moment indicates that the total amount of contaminant
is constant in time, regardless of variations of the flow. The first moment
indicates that there is a horizontal asymmetry only if initially there is a vertical
asymmetry. However, the magnitude of the horizontal asymmetry depends
upon the time dependence of the flow parameters, » and «. The second moment
measures the square of the width of the distribution.

3. Parameterization as Time-Dependent Diffusion

A diffusion process with time-dependent diffusivity K*(#) would yield the

moments
\
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Comparison of the second moment in (10) with that in (11), shows that in some
sense the expression
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must approach K* (#) if the time-dependent shear effect is to behave like
time-dependent diffusion. This becomes more clear after consideration of the
following cases for different time dependencies of # and «.

Case One. In the case of no time dependence, where #» and aare constant,

N
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The time dependence of f should not be interpreted as time-dependent diffu-
sion. Shear dispersion, for this case, can be parameterized as diffusion only for
times long in comparison with the cross-shear mixing time; i.e., a¢ » 1. In this

limit K*:f=2£, (x3)=2u*/20)t, and (x*p»(x)* (Thacker, 1976).
a



Case Two. In the case of harmonically varying shear, with #@#)=
uy, cos(27rt/T), and constant ¢,
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Each expression contains a factor R, which indicates that high frequency shear
does not contribute to the dispersion, since R—>0 as oI —0. This result was also
found by Schonfeld (1961) for this model and by Okubo (1967) for another
harmonic shear flow. The expressions that should be compared with time-
dependent diffusion are those valid in the long time limit ar»1. With R=1,
these expressions are
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Thus, low frequency harmonic shear can be parameterized as time-dependent
diffusion with K*={u(t)]2/2a.

Schonfeld (1961), Bowden (1965), and Okubo (1967) have attempted to
describe harmonic shear as time-independent diffusion. They obtained a diffu-
sion coefficient given by (1/T)J§K* (#) dt, the time average of K* (#) over one
cycle of the shear. This yields the same result for (x2) in the diffusion limit, but
does not allow for generalization from harmonic shear to arbitrary shear.

Case Three. The question remains of how the diffusivity should be
parameterized for the general case in which the shear and mixing vary arbitrarily
in time. The answer should be obtainable by analyzing equation (12). This



analysis is difficult because at any point in time there are three time scales that
must be considered: the inverse of the mixing rate, ;=a~!; the time over which
the mixing varies, t,=a/(da/dt); and the time over which the shear varies,
ts=u/(du/dt). On the basis of the results for cases one and two and the
discussion of Thacker (19706), it seems reasonable that the result of the analysis
for the general case should be

(16)

for to»t; and 204

4. Discussion

The result presented here is that shear dispersion can be parameterized as
enhanced diffusion along the shear even for time-dependent flows, so long as
sufficient time has elapsed for the cross-shear mixing to take place. This is an
extension of a previous time-independent analysis (Thacker, 1976). All of the
conclusions from that analysis should also apply for the time-dependent case.
First, the diffusion parameterization of the mixing should be used when the
details of the shear are not resolved. This is equivalent to ignoring variations in
times shorter than the time required to mix contaminant across the shear and to
ignoring variations along the shear in distances shorter than the distance over
which the shear stretches the contaminant in the cross-shear mixing time.
Second, the eftect of turbulent mixing can be accounted for simply by adding the
turbulent eddy diffusivity to the diffusivity that parameterizes the shear disper-
sion. Finally, a more sophisticated description of the shear flow, such as that
discussed by Bowden (1965), would lead to a more complicated, and perhaps
more accurate, prescription for relating the effective diffusivity parameter to the
shear flow. However, the result found here should also hold for more sophisti-
cated descriptions of the shear flow. The time-dependent diffusivity can be
obtained from the expression for the time-independent diffusivity simply by
allowing the flow parameters in that expression to vary in time.
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